Multimodality Medical Image Fusion

by: **Nahed Tawfik Hamed**

Prof. Moawad I. Dessouky Prof. Fathi E. Abd El-Samie

Electronics and Electrical Communications department, Faculty of Electronic Engineering, Menoufia University.

Prof. Mahmoud Fakhr Prof. Heba A. Elnmer

Computers and systems department, **Electronics Research Institute.**

- Introduction
- Problem definition
- Thesis objectives
- Literature review and related work
- Proposed methods
- Experimental results
- Conclusion
- Future work

Introduction

- Problem definition
- Thesis objectives
- Literature review and related work
- Proposed methods
- Experimental results
- Conclusion
- Future work

Introduction

- Medical image is a window to the human body.
- Medical images is an essential tools in determining a medical diagnosis and treatment.
- Medical images are often affected by noise, blurriness and suffer from lack of contrast which sometimes results in false diagnosis.
- Main target in medical imaging field is to process a medical image so that the result is more suitable than the original image for a medical diagnosis.
- This is achieved by applying different efficient approaches.

Medical Image Applications

Medical Image Retrieval

Medical Image Fusion

Medical Image Compression

Tumor Detection and Mammograms

Medical Image Filtering and Denoising

Introduction

Problem definition

- Thesis objectives
- Literature review and related work
- Proposed methods
- Experimental results
- Conclusion
- Future work

Problem Definition

 Improving the quality of the medical image and reducing randomness and redundancy to increase the clinical applicability of medical image for diagnosis and assessment of medical problems.

- Introduction
- Problem definition
- Thesis objectives
- Literature review and related work
- Proposed methods
- Experimental results
- Conclusion
- Future work

Thesis Objectives

- Presenting a survey study of medical image fusion techniques and medical imaging modalities.
- Proposing an efficient medical image fusion techniques for getting better image fusion results.
- Comparison between the proposed methods and the existing methods.

- Introduction
- Problem definition
- Thesis objectives
- Literature review and related work
- Proposed methods
- Experimental results
- Conclusion
- Future work

Medical Image Fusion

- Medical image fusion is the process of combining multiple images from single or multiple imaging modalities of the same organ.
 To improve the image quality
 - To reduce redundancy
 - To increase the clinical applicability for diagnosis and assessment of medical problems

Medical Image Modalities

- Computerized Tomography (CT)
- Magnetic Resonance Imaging (MRI)
- Magnetic Resonance Angiography (MRA)
- Positron Emission Tomography (PET)
- Single-Photon Emission Computed Tomography (SPECT)

Medical Image Modalities

Modal	Advantages	Disadvantages
СТ	 Better image resolutions Better definition of bone structure 	 Tissue description is limited
MRI	 Superior definition of soft tissue Higher resolution 	 Bone do not show up on MRI scan.
MRA	 Focuses more on the blood vessels than the tissue surrounding it. 	 Tissue description is limited

Medical Image Modalities

Modal	Advantages	Disadvantages
PET	 High sensitive image Provide functional details 	 Low resolution images so need MRI or CT (high resolution, anatomical information)
SPECT	 Show characteristic functional information of the structures and the tissues. 	to get structure information.

Why medical image fusion?

- The most commonly Medical imaging techniques are MRI, MRA, PET, CT, and SPECT.
- Every modal has its characteristics and its practical limitations
- This induces to present new fusion methods for merging information from multiple imaging modalities that seldom exist using individual modality.
- Researchers have addressed many methods for medical image fusion, and have achieved good results.
- Still, there is a scope for enhancement in the performance of the fusion schemes.

Image Decomposition Source images are decomposed into sub-bands by performing decomposition techniques

Fusion Rule

 Applied to merge the sub-images obtained from the source images to reconstruct the fused image.

Image Reconstruction

Implemented to obtain the final fused image using the inverse of the decomposition technique.

Image Quality Assessment

- Subjective Evaluation
- Objective Evaluation

Pixel-Level Fusion

- Merges original information from the source images directly or from their transforms.
- Aims to form a more informative fused image that is appropriate for visual comprehension and computer processing.
- Pixel-level fusion methods can be achieved at:
 - Spatial domain
 - Transform domain

Feature-Level Fusion

- Deals with image features since the features within an image are more valuable than individual pixels.
- In the feature-level fusion, the features are extracted separately from each source image and then the fusion method is applied based on the features from the source images.

Hybrid Pixel & Feature Level Image Fusion

- Merge the advantages of the pixel-level and the feature-level fusion approaches.
- Hybrid techniques avoid the pixel-level drawbacks such as high sensitivity to noise and blurring effects.
- Enhances the feature-level fusion methods by including the information content correlated with each pixel.

Decision-Level Fusion

- Represents a high level of fusion that indicates actual target
- Merge higher level aggregation of results from several algorithms

Advantages and Disadvantages of the State-of-the Art Methods

Methods	Advantages	Disadvantages
Spatial domain pixel-level fusion	 Preserve more spatial features Low complexity 	 Artifacts on boundaries Fusion performance is quite limited. Color distortion
Wavelet-based pixel-level fusion	 Reduce color distortion Minimized distortion of the spectral information 	 Cannot represent curves and edges well.
Other Transforms-based pixel- level fusion (NSCT, Curvelet, Shearlet, etc.)	 Represent curves and edges of images. 	 High complexity More time consuming

Advantages and Disadvantages of the State of the Art Methods

Methods	Advantages	Disadvantages
Intelligent-based pixel-level fusion	 More efficient than that of traditional methods 	 More time consuming
Hybrid transform-based pixel-level fusion	 Avoid weak points of the one fusion technique Combine advantages of both transform techniques 	 More time consuming Complexity of method increases.
Guided filtering-based pixel- level fusion	 Good edge-preserving The quality of the fused image is good for human visual perception 	 More time consuming

Advantages and Disadvantages of the State of the Art Methods

Methods	Advantages	Disadvantages
Feature-Level Fusion	 Deal with image features that more valuable than individual pixel 	 Fusion process at this level is hard to implement since features acquired from diverse imaging modalities may be heterogeneous.
Hybrid Pixel & Feature Level Image Fusion	 Merge advantages of pixel and feature level fusion approaches. Avoid pixel level drawbacks 	 More time consuming Complexity of method increases.
Decision-level fusion	• It reduces redundancy and uncertain information.	 Time consuming and complexity of method increase

- Introduction
- Problem definition
- Thesis objectives
- Literature review and related work
- Proposed methods
- Experimental results
- Conclusion
- Future work

1st Proposed Method

1st Proposed Method

- Proposed method is based on a hybrid of pixel and feature level based fusion method
- Proposed method is implemented using DWT and curvelet transform.
- Different fusion rules are applied.
- different features are computed for each input image to be used in feature level fusion.

Final fused image

1st Proposed Method Steps

- For each input image, DWT is applied.
- The LF coefficients of both images are fused using the maximumbased fusion rule.
- Curvelet transform used to decompose the HF coefficients of DWT into four-scale Curvelet coefficients.
- The HF sub band (fine-scale) of curvelet coefficients are fused using PCA based fusion rule.
- Other corresponding sub bands are fused based on feature level fusion.

1st Proposed Method Steps

- For feature level fusion, different features (entropy, visibility, standard deviation, variance, and mean) are computed and compared.
- Inverse curvelet transform is applied.
- Inverse DWT is applied.
- Finally, fused image is assessed using different objective measures; entropy, *MI*, *SSIM*, *ESSIM*, *FSIM*, *CC*, contrast, edge intensity, *std*, and $Q^{AB/F}$.

- Introduction
- Problem definition
- Thesis objectives
- Literature review and related work
- Proposed methods
- Experimental results
- Conclusion
- Future work
Datasets Description

- All the source images can be obtained at <u>http://www.metapix.de/fusion.htm, www.imagefusion.org</u> and <u>www.med.harvard.edu/aanlib/home.html</u>
- The used images are MRI, MRA, CT, PET, SPECT
- The images is 2-D gray scale and colored images with different formats
- The dimensions of images are 256*256 and 128*128
- The proposed method is evaluated on five groups of medical images include:
 - MRI, CT Images

MRI, PET Images

MRI, SPECT Images

- MRI-T1, MRI-T2 Images
- MRI, MRA Images

Performance Evaluation Metric Parameters

- **Mutual Information** (*MI*): measure information transfer from the source images into the final fused image.
- Entropy: measures the image information content. how much information is in the image.
- **Correlation Coefficient (CC):** Measures similarity between source images and fused image. Range 0-1
- **Structural Similarity-based Metrics (SSIM):** evaluates the similarity between source image and fused image range 0-1

Performance Evaluation Metric Parameters

- Feature Similarity Index (FSIM): emerged from the fact that the human visual system perceives an image principally according to its low-level characteristics. Range 0-1
- Edge-based Structural Similarity (ESSIM): Compares edge information between fused image and original one. Range 0-1
- Edge-based Similarity Measure $(Q^{AB/F})$: Displays the amount of edge details in fused image. Range 0-1

Performance Evaluation Metric Parameters

- Edge intensity: A higher value of edge intensity yields an enhancement of the image quality
- **Standard deviation:** measures the data dispersion from the average value
- Local Contrast: evaluate the quality of the image and the clarity of the view
- **Processing Time:** the time in seconds takes to obtain the fused image

RESULTS

MR and CT Image **Fusion** Visual Assessme nt

MR-CT Image Fusion Visual Assessment

- CT image in figure shows the bone structure where the MRI image displays soft tissue information.
- The fusion method can provide better anatomical information from CT image and soft tissue information from MRI image together.
- It can be observed from figure that the proposed method preserved the main features of CT and MRI images in the fused image.

	Dataset	Size	Metric	Fused,	Fused,	Fused
(N/)	S			image1	image2	image
A CONT	Group	256 ×	CC	0.906401	0.4289	
	(1)	256	MI	3.8827	0.5856	
			SSIM	0.8922	0.1049	
			FSIM	0.979543	0.888971	
\land			ESSIM	0.999996	0.99993	
			Entropy	6.63276966	2.032499	6.7574
				2		
19. a			Q ^{AB/F}			0.7586
(10 m			Edge intensity			0.281595
W. P. S. S.			Contrast			0.728277
			Std			0.000947
			Variance			0.058325
			B :	0 0005		

Fused Image

MRI

СТ

		Dataset	Size	Metric	Fused,	Fused,	Fused
	(ART)	S			image1	image2	image
MRI	EXT	Group	256 × 256	CC	0.698758	0.792865	
E Contraction	(2)		MI	2.785454	2.46784		
			SSIM	0.652529	0.486351		
				FSIM	0.939216	0.955559	
СТ	S MAR			ESSIM	0.999986	0.999987	
				Entropy	7.522243	7.275402	7.753463
	AND SHE			Q ^{AB/F}			0.505343
100 100				Edge intensity			0.571576
Fused	E W A			Contrast			0.696413
Image				Std			0.001131
	A REAL PROPERTY			Variance			0.083183
				Processing	1.848313 se	С.	

		Dataset	Size	Metric	Fused,	Fused,	Fused
		S			image1	image2	image
MRI		Group	256 × 256	CC	0.690143	0.931525	
		(3)		MI	1.474894	1.4261	
				SSIM	0.695076	0.763142	
				FSIM	0.930376	0.962536	
СТ				ESSIM	0.999985	0.999991	
01				Entropy	3.445887	2.677121	5.014685
				Q ^{AB/F}			0.56828
				Edge intensity			0.340107
Fused				Contrast			0.821052
Image				Std			0.001328
				Variance			0.114671
				Processing	2.379002		

		Dataset	Size	Metric	Fused,	Fused,	Fused
		S			image1	image2	image
MRI	the second second	Group	256 × 256	CC	0.766832	0.935219	
		(4)		MI	1.923722	1.480081	
				SSIM	0.812445	0.764195	
				FSIM	0.956612	0.970772	
СТ	Xas			ESSIM	0.999992	0.999994	
01	1. 30 - 1.			Entropy	3.095738	2.946452	4.546677
				Q ^{AB/F}			0.447111
				Edge intensity			0.210947
Fused	CAN B			Contrast			0.55893
mage				Std			0.001352
				Variance			0.118813
				Processing time	2.1727		

MR-T1 and MR-T2 Image **Fusion** Visual Assessme nt

MR-T1, MR-T2 Image Fusion Visual Assessment

- MR-T1 image is the contrast modal that is the most generally utilized for brain structure analysis, but the boundaries of brain structures remain unclear in these images.
- So, fusion of these images with different sequences to reconstruct a single image with improved quality is required to obtain complementary information in a single image, so that it would be effective for clinical diagnosis.
- In the proposed method, MRI-T1 and MRI-T2 are combined to enhance the boundaries of the structure, besides improving the image quality.

		Dataset	Size	Metric	Fused,	Fused,	Fused
		S			image1	image2	image
MRI-	EVA	Group	256 × 256	CC	0.937902	0.847794	
T1		(5)		MI	4.65242	3.758753	
				SSIM	0.845206	0.731335	
				FSIM	0.96977	0.916936	
MRI-	ESS E			ESSIM	0.999997	0.999991	
T2	List in St			Entropy	3.331931	3.080996	4.362529
				Q ^{AB/F}			0.549182
				Edge intensity			0.266602
Fused	CE TE			Contrast			0.711696
Image				Std			0.000909
				Variance			0.053726
				Processing	2.180571		

		Dataset	Size	Metric	Fused,	Fused,	Fused
		S			image1	image2	image
MRI-		Group	256 × 256	CC	0.946888	0.935497	
T1	(m) -]	(6)		MI	3.056232	2.921821	
				SSIM	0.859041	0.763632	
				FSIM	0.976103	0.960401	
MRI-				ESSIM	0.999998	0.999996	
T2				Entropy	2.974882	3.209406	4.282903
				Q ^{AB/F}			0.575182
				Edge intensity			0.209073
Fused				Contrast			0.608012
Image				Std			0.001029
				Variance			0.0688
				Processing	6.533551		

	Dataset	Size	Metric	Fused,	Fused,	Fused
	S			image1	image2	image
MRI-	Group	256 × 256	CC	0.8833	0.8233	
T1	(7)		MI	1.4089	1.6857	
			SSIM	0.7527	0.8145	
			FSIM	0.954961	0.887828	
MRI-			ESSIM	0.999996	0.999988	
T2			Entropy	3.585163	3.263062	4.5464
			Q ^{AB/F}			0.6196
			Edge intensity			0.294775
Fused			contrast			0.673838
Image			Std			0.001097
			Variance			0.078236
			Processina	2.8920		

MR and MRA Image **Fusion** Visual Assessme nt

MRI-T1

MRA

Fused Image

MRI-MRA Images Fusion Visual Assessment

- MRI image provides clear information for the soft tissues; however, it cannot observe the abnormality.
- MRA image can easily detect the abnormalities, it has insufficient tissues information.
- So, the fusion process of the two images with the appropriate method is essential to get a fused image with complementary information helpful in clinical diagnosis.
- As in figure the proposed method preserves the information from the source images.

	Dataset	Size	Metric	Fused,	Fused,	Fused
	S			image1	image2	image
	Group	256 × 256	CC	0.990122	0.817918	
	(8)		MI	3.6747	1.9043	
			SSIM	0.963403	0.563003	
0			FSIM	0.995296	0.937495	
			ESSIM	0.999999	0.999992	
			Entropy	5.867818	4.911601	6.02737
			Q ^{AB/F}			0.669455
			Edge intensity			0.299096
			contrast			0.681107
			Std			0.001029
			Variance			0.068827
			Processing	2.382021		

MRI-T1

MRA

Fused Image

MR and **PET Image Fusion** Visual Assessme nt

MRI-PET Images Fusion Visual Assessment

- PET imaging modality incorporates functional data acquisition with low resolution image.
- MRI image offers a clear soft tissue image and anatomic information.
- Figure shows that the proposed method achieved a fused image that combined the complementary information of two images and the color is perfectly kept in the integrated images.

		Dataset	Size	Metric	Fused,	Fused,	Fused
		S			image1	image2	image
MRI-		Group	128 × 128	CC	0.843685	0.900689	
T1	EN.3	(9)		MI	8.436275	4.072438	
	La I			SSIM	0.706925	0.726409	
				FSIM	0.93142	0.952352	
PET				ESSIM	0.999993	0.999977	
				Entropy	4.424126	2.689293	4.795067
				Q ^{AB/F}			0.579481
				Edge intensity			0.471174
Fused Image				contrast			0.886692
				Std			0.001498
				Variance			0.146016
				Processing	13.18878		

		Datasets	Size	Metric	Fused,	Fused,	Fused
					image1	image2	image
MRI- T1		Group	256 × 256	CC	0.85844	0.906862	
	(10)		MI	1.059998	1.499181		
			SSIM	0.829941	0.841775		
			FSIM	0.980935	0.983548		
PFT	Carlos .			ESSIM	0.999996	0.999994	
	(The second			Entropy	2.272423	2.493845	3.473756
	242.02.0			Q ^{AB/F}			0.478778
				Edge intensity			0.220434
Fused	1383			contrast			0.75979
Image				Std			0.001188
				Variance			0.091728
				Processing	8.034635		

		Datasets	Size	Metric	Fused,	Fused,	Fused
					image1	image2	image
		Group	256 × 256	CC	0.75161	0.965751	
MRI- T1		(11)		MI	1.308583	2.404525	
	Mars /			SSIM	0.596849	0.854721	
.198.322			FSIM	0.92479	0.977752		
DET				ESSIM	0.999994	0.999995	
PEI	Sec. 9			Entropy	3.37178	4.228631	5.688478
				Q ^{AB/F}			0.524134
				Edge intensity			0.220541
Fused	2.2.3			contrast			0.548115
Image			Std			0.001309	
				Variance			0.111504
				Processing	7.975237		

MR and **SPECT** Image **Fusion** Visual Assessme nt

MR and **SPECT** Image **Fusion** Visual Assessme nt

MRI-SPECT Images Fusion Visual Assessment

- SPECT modal provides a low-resolution color image, where MRI image is a high-resolution image with better anatomical details.
- The fused image of MRI and SPECT images should preserve all the anatomical details of the MRI image without changing the color of the SPECT image that does not alter the functional content.
- Visual analysis of SPECT-MRI fusion in figure proved that the obtained image combined the soft tissue of MRI

		Datasets	Size	Metric	Fused,	Fused,	Fused
					image1	image2	image
	F & A	Group	256 × 256	CC	0.853753	0.916044	
MRI		(12)		MI	2.973545	3.337293	
				SSIM	0.69819	0.63245	
			FSIM	0.904392	0.937319		
0050				ESSIM	0.999996	0.999994	
SPEC T	2			Entropy	4.652689	4.404903	6.217953
				Q ^{AB/F}	0.441738		
				Edge intensity	0.217781		
Fused	6228			contrast	0.504742		
Image				Std	0.001175		
				Variance	0.089842		
				Processing	8.286084		

	Datasets	Size	Metric	Fused,	Fused,	Fused
				image1	image2	image
MRI	Group	256 × 256	CC	0.957356	0.794862	
	(13)		MI	3.903703	2.547283	
			SSIM	0.895171	0.505964	
			FSIM	0.963266	0.826461	
T			ESSIM	0.999998	0.999982	
			Entropy	4.484795	2.499	5.319904
404			Q ^{AB/F}			0.679231
Fused			Edge intensity			0.329394
Image			contrast			0.69599
			Std			0.001194
			Variance			0.092696
			Processing	7.98057		

	Datasets	Size	Metric	Fused,	Fused,	Fused
				image1	image2	image
	Group	256 × 256	CC	0.902411	0.944518	
MRI	(14)		MI	1.449958	2.09184	
			SSIM	0.735503	0.835404	
			FSIM	0.936237	0.971887	
			ESSIM	0.999995	0.999996	
T			Entropy	3.445887	3.491055	4.924513
			Q ^{AB/F}			0.446702
Fused Image			Edge intensity			0.174519
			contrast			0.506029
			Std			0.001196
			Variance			0.092997
			Processing	8.142549		

		Datasets	Size	Metric	Fused,	Fused,	Fused
					image1	image2	image
MRI	Group	256 × 256	CC	0.9378	0.9780		
	(15)		MI 1.3785 2.0936	2.0936			
				SSIM	0.7552	0.8428	
			FSIM	0.965019	0.973798		
	Contraction of the second			ESSIM	0.99999	0.999999	
T SPEC				Entropy	3.174119	3.483786	4.641986
				Q ^{AB/F}			0.4357
				Edge intensity			0.174705
Fused Image	22			contrast			0.546781
			Std			0.001248	
			Variance			0.101301	
				Processing	3.7269		

		Datasets	Size	Metric	Fused,	Fused,	Fused
					image1	image2	image
MRI	Group	256 × 256	CC	0.914856	0.837816		
	(16)		MI	3.468039 3.83528	3.83528		
				SSIM	0.80185	0.67668	
			FSIM	0.961173	0.946837		
0050				ESSIM	0.999996	0.999993	
SPEC T				Entropy	3.895176	3.681655	5.106712
				Q ^{AB/F}			0.543792
				Edge intensity			0.223498
Fused Image				contrast			0.558539
			Std			0.001193	
				Variance			0.092564
				Processing	8.127691		

	Datasets	Size	Metric	Fused,	Fused,	Fused
				image1	image2	image
	Group	256 × 256	CC	0.902411	0.944518	
MRI	(17)		MI	1.449958	2.09184	
			SSIM	0.735503	0.835404	
			FSIM	0.936237	0.971887	
			ESSIM	0.999995	0.999996	
T			Entropy	3.445887	3.491055	4.924513
Fused Image			Q ^{AB/F}			0.446702
			Edge intensity			0.174519
			contrast			0.506029
			Std			0.001196
			Variance			0.092997
			Processing	8.151526		

		Datasets	Size	Metric	Fused,	Fused,	Fused
					image1	image2	image
A CONTRACT OF		Group	256 × 256	CC	0.942654	0.911097	
MRI		(18)		MI	1.459708	1.782513	
				SSIM	0.797792	0.7764	
				FSIM	0.946592	0.944504	
	ANT.			ESSIM	0.999996	0.999992	
T				Entropy	3.095738	3.401559	4.852009
				Q ^{AB/F}			0.511265
				Edge intensity			0.20882
Fused Image	657			contrast			0.518154
				Std			0.001339
				Variance			0.116548
				Processing	8.134452		

		Datasets	Size	Metric	Fused,	Fused,	Fused
					image1	image2	image
	Group	256 × 256	CC	0.877127	0.951248		
MRI	- Sert	(19)		MI	1.607385	1.775358	
				SSIM	0.814467	0.780961	
				FSIM	0.966359	0.972946	
0050				ESSIM	0.999996	0.999995	
SPEC T	50			Entropy	2.988912	2.80937	4.122755
				Q ^{AB/F}			0.441106
				Edge			0.18221
Fused Image				intensity			
			contrast			0.627878	
			Std			0.001228	
				Variance			0.098131
				_ .			

		Datasets	Size	Metric	Fused,	Fused,	Fused
					image1	image2	image
	Group	256 × 256	CC	0.863611	0.986506		
MRI	Class of	(20)	MI	1.198272	1.965825		
				SSIM	0.733925	0.817587	
			FSIM	0.94916	0.969978		
0050	8-0			ESSIM	0.999995	0.999996	
SPEC T	and the			Entropy	3.068157	3.333017	4.667776
				Q ^{AB/F}			0.373105
				Edge			0.157978
Fused Image			intensity				
			contrast			0.543936	
			Std			0.001231	
				Variance			0.098578
Comparison with Existing Methods

- Comparison with the existing methods in the area of medical image fusion is a difficult issue since different works have utilized different datasets for experimentation.
- Besides, various authors use different parameters to assess their performance.
- However, the results obtained by the proposed method are compared with the several recent existing fusion methods in a quantitative manner using the most

COMPARISON WITH EXISTING METHODS MRI

Methods			Metri	CS		
momode	Entropy	MI	CC	SSIM	Q ^{AB/F}	Time
Fast curvelet tarnsform with Genetic Algorithm [9] 2020		3.3121		0.8651	0.4262	
Biorthogonal WT with average and maximum fusion rule [1] 2019	6.2974				0.6812	
NSST [2] 2018	6.4179	2.376				
NSCT-SR-PCNN [3] 2018		2.2426		0.9567	0.6899	
NSCT [4] 2019		2.2188			0.8502	
SR-Modified Spatial frequency [5] 2018					0.6606	
Intuitionistic fuzzy sets (IFS) [6] 2019	6.806		0.647		0.636	3.75
Deep Stacked CNN [7] 2018	6.188	3.464				11.046
CNN [8] 2017						12.1
1 st Proposed method	6.7574	4.4683	0.9064	0.9971	0.7586	2.6085

2nd Proposed Method

2nd Proposed Method

- Proposed method is based on a hybrid of pixel and feature level based fusion method
- Proposed method is implemented using NSCT
- Different fusion rules are applied.
- Stacked Autoencoder (SAE) is used as automatic feature extractor.
- The proposed method is assessed using different pairs of medical images

Stacked Autoencoder (SAE)

- SAE is a common class of deep neural networks
- SAE consists of multiple layers of autoencoders
- The autoencoder is trained to extract features from unlabeled data.
- The encoder map the input data into hidden representation, where the decoder is used to reconstruct input data from the hidden representation.
- The encoder process is defined as

$$h_n = f(W_1 x_n + b_1)$$

Stacked Autoencoder (SAE)

The decoder process is defined as

 $\hat{x}_n = g(W_2h_n + b_2)$

The parameters of the autoencoder are optimized to decrease the reconstruction error:

$$\emptyset(\Theta) = \arg_{\theta,\theta'} \min \frac{1}{n} \sum_{i=1}^{n} L(x^i, \hat{x}^i)$$

where L denotes a loss function $L(x, \hat{x}) = ||x| - \hat{x}||^2$.

- The input images are decomposed into low-frequency and high-frequency coefficients by using NSCT.
- Low-frequency sub-bands represent the image approximation, and these coefficients are combined by the maximum-based fusion rule.
- The high-frequency sub-bands comprise the significant details information of the images, the high-frequency sub-bands are combined by the SAE-based choose-max fusion approach.
- The final fused image is reconstructed by implementing the

Fusion of low-frequency sub-band coefficients

- Maximum based fusion rule is adopted to fuse the low-frequency coefficients
- The maximum fusion rule assists to improve the visual quality of the final fused image in terms of better contrast.

$$C_L^F(i,j) = Max(C_L^A(i,j), C_L^B(i,j))$$

• Where $C_L^A(i,j)$, $C_L^B(i,j)$ represent low-frequency coefficients of the input images and $C_L^F(i,j)$ is the fused low-frequency coefficients.

coefficients

2nd PROPOSED METHOD STEPS Fusion of high-frequency sub-band coefficients

- High-frequency coefficients of input images are divided into blocks.
- All obtained blocks from two images are reshaped into vectors.
- The coefficients vectors are delivered as input to SAE for training, then the feature vectors are extracted.
- The spatial frequency (SF) of the feature vectors is calculated to adopt in the fusion process.

$$SF = \sqrt{RF^2 + CF^2} \qquad \qquad RF = \sqrt{\frac{1}{M(N-1)} \sum_{i=1}^{M} \sum_{j=2}^{N} (X(i,j-1) - X(i,j))^2} \\ CF = \sqrt{\frac{1}{(M-1)N} \sum_{i=2}^{M} \sum_{j=1}^{N} (X(i,j) - X(i-1,j))^2}$$

Fusion of high-frequency sub-band coefficients

• For each pair of coefficients vectors, select the one with maximum SF as the fused vector if:

$$C_{H}^{F}(i,j) = \begin{cases} C_{H}^{A}(i,j), & if\left(SF_{H}^{A} \ge SF_{H}^{B}\right) \\ C_{H}^{B}(i,j), & if\left(SF_{H}^{A} < SF_{H}^{B}\right) \end{cases}$$

• where C_H^A , C_H^B are the high-frequency sub-bands of the two images and C_H^F is the fused high-frequency sub-band. SF_H^A , SF_H^B are the spatial frequency of the feature vectors.

RESULTS

MR and CT Image Fusion Visual Assessment

	Datasets
MRI	Group (1
СТ	
Fused Image	

5	Size	Metric	Fused, image1	Fused, image2	Fused
					image
)	256 × 256	CC	0.90900084	0.430389148	
		MI	5.72068838	0.638169642	
		SSIM	0.906993899	0.106697592	
		FSIM	0.979774652	0.889229095	
		ESSIM	0.999996274	0.9999833	
		Entropy	6.632769662	2.03249879	6.767283
		Q ^{AB/F}			0.79241256
		Edge intensity			0.277694381
		Contrast			0.705344721
		Std			0.000947029
		Variance			0.058319406
		Processing time	748.29		

		Dataset	Size	Metric	Fused,	Fused,	Fused
10	20	S			image1	image2	image
MRI (E)		Group	256 × 256	CC	0.713766698	0.784107114	
E.	as /	(2)		MI	4.022519498	2.477958461	
CO COS			SSIM	0.711480552	0.435867403		
			FSIM	0.938612873	0.955728907		
				ESSIM	0.999988627	0.999985226	
	2 A			Entropy	7.5222432	7.275402243	7.724506969
CARL CONTRACT				Q ^{AB/F}			0.548663312
10				Edge			0.570161371
Fused				intensity			
Image	≤ 1			Contrast			0.653849888
			Std			0.001125836	
				Variance			0.082424603

.

100 501

Dataset	Size	Metric	Fused,	Fused,	Fused
S			image1	image2	image
Group	256 × 256	CC	0.689414907	0.935889626	
(3)		MI	1.642479526	1.6346501	
		SSIM	0.722001059	0.800829297	
		FSIM	0.931278646	0.962363132	
		ESSIM	0.999984676	0.999992764	
		Entropy	3.445887215	2.677120664	4.4332992
		Q ^{AB/F}			0.618814981
		Edge			0.316511364
		intensity			
		Contrast			0.713645118
		Std			0.001329755
		Variance			0.114982119
	Dataset S Group (3)	DatasetSizeS256 × 256(3)9	Dataset sSizeMetrics256 × 256CC(3)MISSIMSSIMFSIMESSIMENtropyQAB/FEdgeintensityintensityContrastStdStd	Dataset sSize NetricFused, image1Group (3)256 × 256CC0.689414907(3)CC0.689414907MI1.642479526SSIM0.722001059SSIM0.722001059FSIM0.931278646ESSIM0.999984676ENTOPY3.445887215QAB/F0.900000000000000000000000000000000000	Dataset sSize NetricFused, image1Fused, image2Group (3)256 × 256CC0.6894149070.935889626MI1.6424795261.6346501SSIM0.7220010590.800829297FSIM0.9312786460.962363132ESSIM0.9999846760.999992764Entropy3.4458872152.677120664QAB/FIIIEdgeIIIIntensityIIIStdIIIVarianceIII

	Dataset	Size	Metric	Fused,	Fused,	Fused
	S			image1	image2	image
and the second se	Group	256 × 256	CC	0.771747	0.932452	
	(4)		MI	5.116124	4.113328	
			SSIM	0.8484	0.754678	
			FSIM	0.956777	0.971081	
Xal			ESSIM	0.999993	0.999994	
1			Entropy	3.095738	2.946452	3.914439
			Q ^{AB/F}			0.510797
•			Edge			
			intensity			0.199764
			Contrast			0.500548
			Std			0.001348
			Variance			0.118085

СТ

MRI

Fused Image **MR-T1** and MR-T2 Image **Fusion** Visual Assessme nt

		Dataset	Size	Metric	Fused,	Fused,	Fused
		S			image1	image2	image
MRI-	TV 3	Group	256 × 256	CC	0.927954	0.863742	
T1	(5)		MI	1.514447	1.404774		
			SSIM	0.809433	0.771421		
MDL			FSIM	0.968679	0.920927		
	E 2. E			ESSIM	0.999996	0.999992	
T2	Les an A			Entropy	3.331931	3.080996	4.443287
				Q ^{AB/F}			0.568379
				Edge			
Fused	53.7-3			intensity			0.253153
mage				Contrast			0.683801
			Std			0.000902	
				Variance			0.052963

.

		Dataset	Size	Metric	Fused,	Fused,	Fused
		S			image1	image2	image
MRI-		Group	256 × 256	CC	0.94363	0.939285	
T1	(6)		MI	1.560381	1.853057		
			SSIM	0.827096	0.795939		
			FSIM	0.976099	0.961695		
MRI-				ESSIM	0.999998	0.999997	
T2				Entropy	2.974882	3.209406	4.080036
				Q ^{AB/F}			0.575347
				Edge			
Fused				intensity			0.202072
Image	Case Alleran			Contrast			0.5826
				Std			0.001028
				Variance			0.068669

.

		Dataset	Size	Metric	Fused,	Fused,	Fused
		S			image1	image2	image
MRI-		Group	256 × 256	CC	0.901617	0.806028	
T1		(7)		MI	3.886894	3.8548755	
				SSIM	0.797326	0.84539	
MRL			FSIM	0.954217	0.890455		
				ESSIM	0.999995	0.999989	
T2				Entropy	3.585163	3.263062	4.597607
				Q ^{AB/F}			0.663709
				Edge			
Fused				intensity			0.285927
Image				contrast			0.666949
				Std			0.001091
				Variance			0.077343

•

MR and MRA Image **Fusion** Visual Assessme nt

MRI-T1

MRA

Fused Image

		Dataset	Size	Metric	Fused,	Fused,	Fused
		S			image1	image2	image
MRI-		Group	256 × 256	CC	0.989288	0.865892	
T1		(8)		MI	3.464962	2.170595	
				SSIM	0.956741	0.588246	
MRA			FSIM	0.994743	0.937595		
			ESSIM	0.999999	0.999992		
				Entropy	5.867818	4.911601	5.888905
				Q ^{AB/F}			0.646779
	632			Edge			
Fused	and			intensity			0.296677
Image	E A B			contrast			0.67447
				Std			0.001026
				Variance			0.0685

D ·

MR and **PET Image Fusion Visual** Assessme nt

		Dataset	Size	Metric	Fused,	Fused,	Fused
		S			image1	image2	image
MRI		Group	128 × 128	CC	0.809284581	0.923783696	
	6 1 3	(9)		MI	7.711948915	4.086781781	
Call 1			SSIM	0.652608769	0.795028598		
PFT			FSIM	0.92599626	0.953932263		
			ESSIM	0.999989746	0.999983087		
				Entropy	4.424126208	2.689293401	4.59804193
				Q ^{AB/F}			0.654581741
				Edge			0.429670269
Fused				intensity			
Image				contrast			0.833683308
			Std			0.001482418	
				Variance			0.142905203
				_	229.2137579		

		Datasets	Size	Metric	Fused,	Fused,	Fused
					image1	image2	image
MRI		Group	256 × 256	CC	0.831481	0.92047	
		(10)		MI	5.540151	6.627818	
				SSIM	0.788781	0.908879	
PET			FSIM	0.97995	0.985337		
			ESSIM	0.999994	0.999996		
	A COL			Entropy	2.272423	2.493845	3.020816
	14144			Q ^{AB/F}			0.459731
				Edge			0 172135
Fused				intensity			0.172100
mage	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			contrast			0.61779
			Std			0.00117	
				Variance			0.088996

•

		Datasets	Size	Metric	Fused,	Fused,	Fused
					image1	image2	image
		Group	256 × 256	CC	0.753566	0.96482	
MRI		(11)		MI	3.162081	4.519415	
	and a			SSIM	0.608558	0.841379	
	175.32			FSIM	0.92392	0.978479	
DET				ESSIM	0.999994	0.999995	
PEI				Entropy	3.37178	4.228631	5.596096
				Q ^{AB/F}			0.537307
Fused Image	And and a second			Edge			0 210931
				intensity			0.210001
				contrast			0.513534
				Std			0.001308
				Variance			0.111219

MR and **SPECT** Image **Fusion** Visual Assessme nt

MR and **SPECT** Image **Fusion** Visual Assessme nt

		Datasets	Size	Metric	Fused,	Fused,	Fused
					image1	image2	image
MRI	$f \neq A$	Group 2	256 × 256	CC	0.85418	0.917017	
		(12)		MI	2.961911	3.703394	
			SSIM	0.704628	0.651403		
				FSIM	0.900458	0.941809	
SPEC	1.55			ESSIM	0.999995	0.999995	
Т	2			Entropy	4.652689	4.404903	6.20432
				Q ^{AB/F}			0.450012
Fused Image	Contraction of the second seco			Edge			0 206923
	1 × 8			intensity			image image
				contrast			0.485158
				Std			0.001174
				Variance			0.089673
				_			

		Datasets	Size	Metric	Fused,	Fused,	Fused
					image1	image2	image
MRI		Group	256 × 256	CC	0.948151	0.804876	
		(13)		MI	1.925117	1.286948	
				SSIM	0.815497	0.567972	
				FSIM	0.958429	0.83989	
SPEC T	123			ESSIM	0.999995	0.999985	
				Entropy	4.484795	2.499	5.641238
				Q ^{AB/F}			0.53921
Fused Image	Con the second			Edge			
inage	Co.			intensity			image in age in
				contrast			0.636508
				Std			0.001182
				Variance			0.090817

.

Fuse Imag

	Datasets	Size	Metric	Fused,	Fused,	Fused
				image1	image2	image
MRI	Group	256 × 256	CC	0.903712	0.944181	
	(14)		MI	4.055668	4.856969	
			SSIM	0.74744	0.834151	
			FSIM	0.933578	0.97544	
SPEC			ESSIM	0.999996	0.999997	
			Entropy	3.445887	3.491055	4.745352
			Q ^{AB/F}			0.472339
Fused			Edge			0 164372
Image			intensity			0.104072
			contrast			0.468891
			Std			0.001194
			Variance			0.092753

.

		Datasets	Size	Metric	Fused,	Fused,	Fused
					image1	image2	image
MRI		Group	256 × 256	CC	0.934599	0.981366	
	C. S. S.	(15)		MI	1.59347	3.078105	
			;	SSIM	0.72431	0.892027	
				FSIM	0.963792	0.981066	
SPEC T	555			ESSIM	0.999994	0.999998	
				Entropy	3.174119	3.483786	4.279645
				Q ^{AB/F}			0.44373
Fused				Edge			0 144671
Image				intensity			0.144071
				contrast			0.479296
				Std			0.001243
				Variance			0.100484

.

Datasets	Size	Metric	Fused,	Fused,	Fused
			image1	image2	image
Group	256 × 256	CC	0.909489	0.843865	
(16)		MI	1.423243	2.617246	
		SSIM	0.756473	0.739328	
		FSIM	0.956783	0.953602	
		ESSIM	0.999995	0.999994	
		Entropy	3.895176	3.681655	5.016085
		Q ^{AB/F}			0.50045
		Edge			0 195166
		intensity			0.100100
		contrast			0.521311
		Std			0.001188
		Variance			0.091726

MRI	

SF	PEC	
Т		

Fused Image

Datasets	Size	Metric	Fused,	Fused,	Fused		
			image1	image2	image		
Group	256 × 256	CC	0.899382	0.94696			
(17)		MI	1.79986	3.314436			
		SSIM	0.709034	0.881427			
		FSIM	0.929109	0.978645			
		ESSIM	0.999995	0.999997			
		Entropy	3.445887	3.491055	4.370006		
		Q ^{AB/F}			0.487484		
		Edge			0 152893		
		intensity			0.102000		
		contrast			0.456982		
		Std			0.001193		
		Variance			0.092559		
		Datasets	Size	Metric	Fused,	Fused,	Fused
----------------	-----	----------	-----------	-------------------	----------	----------	----------
MRI					image1	image2	image
		Group	256 × 256	CC	0.944995	0.909792	
		(18)		MI	4.654303	4.986795	
				SSIM	0.833974	0.771147	
SPEC T				FSIM	0.945638	0.949615	
				ESSIM	0.999997	0.999993	
				Entropy	3.095738	3.401559	4.472392
				Q ^{AB/F}			0.546984
Fused Image				Edge			0 196263
	123			intensity			01100200
				contrast			0.467758
				Std			0.001338
				Variance			0.116362

	Datasets	Size	Metric	Fused,	Fused,	Fused
				image1	image2	image
MRI	Group	256 × 256	CC	0.86591	0.958054	
the start	(19)		MI	1.636563	2.52507	
			SSIM	0.762349	0.850464	
			FSIM	0.963519	0.976275	
SPEC			ESSIM	0.999994	0.999996	
			Entropy	2.988912	2.80937	3.977578
			Q ^{AB/F}			0.416947
			Edge			0 144331
Fused			intensity			0.144001
Image			contrast			0.548611
			Std			0.001222
			Variance			0.097155
			_			

	Datasets	Size	Metric	Fused,	Fused,	Fused
				image1	image2	image
MRI	Group	256 × 256	CC	0.852913	0.990854	
	(20)		MI	1.330145	3.144966	
			SSIM	0.685346	0.893473	
			FSIM	0.947997	0.979815	
SPEC			ESSIM	0.999993	0.999998	
T			Entropy	3.068157	3.333017	4.237963
			Q ^{AB/F}			0.394274
			Edge			0 118867
Fused			intensity			0.110007
inage			contrast			0.453822
			Std			0.001226
			Variance			0.097755
			_			

COMPARISON WITH EXISTING N

Methods	Metrics				
	Entropy	MI	SSIM	Q ^{AB/F}	
CNN (2017)	6.1741	-	-		
CNN (2018)	6.5997	2.6023	0.5676	0.7276	
CNN and shearlet transform (2018)	6.7612	5.7545	-	-	
Curvelet transform and GA (2020)	-	3.3121	-	0.4262	
Non-subsampled shearlet transform (2018)	6.4179	2.3761	-	-	
Sparse Representation (2017)		4.6721		0.6677	
Fuzzy Logic in NSCT (2016)	-	4.5619		0.7859	
Biorthogonal wavelet transform (2019)	5.9985	1.7880	-	0.6672	
2 nd Proposed method	6.767283	5.72068 8	0.90368 3	0.792	

COMPARISON BETWEEN THE TWO **PROPOSED METHODS**

Datasets	Size	Metric	1 st Proposed	2nd Proposed	
			Method	Method	
Group (1)	256 × 256	CC	0.906401	0.90900084	
		MI	3.8827	5.72068838	
		SSIM	0.8922	0.906993899	
		FSIM	0.979543	0.979774652	
		ESSIM	0.999996	0.999996274	
		Entropy	6.7574	6.767283	
		Q ^{AB/F}	0.7586	0.79241256	
		Edge intensity	0.281595	0.277694381	
		contrast	0.728277	0.705344721	
		Std	0.000947	0.000947029	
		Variance	0.058325	0.058319406	
			0.0005	740.00	

Outlines

- Introduction
- Problem definition
- Thesis objectives
- Literature review and related work
- Proposed methods
- Experimental results
- Conclusion
- Future work

Conclusion

- Multimodality medical image fusion seeks to merge information from diverse images to attain a more informative image.
- Most of the researchers are directed toward transform domain pixel-level schemes.
- The prominent pixel-based fusion approaches include different transform strategies, dictionary learning, guided filtering, and intelligent methods.
- Merging more than one image fusion pixel-level approaches is effective in medical image analysis.
- The hybrid systems of both pixel-level and feature-level image fusion combines the advantages of both methods and avoids their drawbacks.
- The deep learning methods in the area of image fusion have become an active topic due to its high ability in feature extraction and data representation.

Outlines

- Introduction
- Problem definition
- Thesis objectives
- Literature review and related work
- Proposed methods
- Experimental results
- Conclusion
- Future work

Future Work

- Enhancement the hybrid pixel and feature-level fusion methods for multimodality medical image fusion.
- Decision-level medical image fusion approach needs further extensive research and exploration.
- Improvement of image fusion technique based on different optimization technique
- The application of deep learning techniques in the field of medical image fusion has also emerged as an active topic in the last years.

Publications

- Nahed Tawfik, Heba A. Elnemr, Mahmoud Fakhr, Moawad I. Dessouky, and Fathi E. Abd El-Samie, "Survey Study of Multimodality Medical Image Fusion Methods", *Multimedia Tools and Applications*, 2020, <u>https://doi.org/10.1007/S11042-020-08834-5</u>, Impact factor: 2.313 (Q2)
- 2. Nahed Tawfik, Heba A. Elnemr, Mahmoud Fakhr, Moawad I. Dessouky, and Fathi E. Abd El-Samie, "Hybrid Pixel-Feature Fusion System for Multimodal Medical Images", Journal of Ambient Intelligence and Humanized Computing, 2020, <u>https://doi.org/10.1007/S12652-020-02154-</u> <u>0</u>, Impact factor: 4.594 (Q1)
- 3. Nahed Tawfik, Heba A. Elnemr, Mahmoud Fakhr, Moawad I. Dessouky, and Fathi E. Abd El-Samie, "Multimodal medical image fusion based on sacked autoencoder and NSCT domain", under review.

